
ARTICLE IN PRESS
Contents lists available at ScienceDirect

Journal of Sound and Vibration

Journal of Sound and Vibration 329 (2010) 4109–4123
0022-46

doi:10.1

� Cor

E-m
journal homepage: www.elsevier.com/locate/jsvi
Active–passive vibration absorber of beam–cart–seesaw system
with piezoelectric transducers
J. Lin �, C.J. Huang, Julian Chang, S.-W. Wang

Department of Mechanical Engineering, Ching Yun University, 229, Chien-Hsin Road, Jung-Li City, Taiwan 320, ROC
a r t i c l e i n f o

Article history:

Received 6 October 2009

Received in revised form

14 April 2010

Accepted 20 April 2010
Handling Editor: D.J. Wagg
system, and renovate a novel approach for achieving a high performance active–passive
Available online 15 May 2010
0X/$ - see front matter & 2010 Elsevier Ltd. A

016/j.jsv.2010.04.023

responding author. Tel.: +886 3 4581196x376

ail address: jlin@cyu.edu.tw (J. Lin).
a b s t r a c t

In contrast with fully controllable systems, a super articulated mechanical system

(SAMS) is a controlled underactuated mechanical system in which the dimensions of the

configuration space exceed the dimensions of the control input space. The objectives of

the research are to develop a novel SAMS model which is called beam–cart–seesaw

piezoelectric vibration absorber for such system. The system consists of two mobile

carts, which are coupled via rack and pinion mechanics to two parallel tracks mounted

on pneumatic rodless cylinders. One cart carries an elastic beam, and the other cart acts

as a counterbalance. One adjustable counterweight mass is also installed underneath

the seesaw to serve as a passive damping mechanism to absorb impact and shock

energy. The motion and control of a Bernoulli–Euler beam subjected to the modified

cart/seesaw system are analyzed first. Moreover, gray relational grade is utilized to

investigate the sensitivity of tuning the active proportional-integral-derivative (PID)

controller to achieve desired vibration suppression performance. Consequently, it is

shown that the active–passive vibration absorber can not only provide passive damping,

but can also enhance the active action authority. The proposed software/hardware

platform can also be profitable for the standardization of laboratory equipment, as well

as for the development of entertainment tools.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Control of underactuated systems has received considerable attention. In contrast with fully controllable systems, a
super articulated mechanical system (SAMS) is a controlled underactuated mechanical system in which the dimensions of
the configuration space exceed the dimensions of the control input space. For instance, an inverted pendulum on a cart, the
ball and beam problem, a mass sliding on a cart, robots with joint elasticity, an underactuated bipedal robot, and
nonholonomic mobile robots are all SAMSs [1,2]. Studies [3–6] of motion and control planning of nonholonomic systems
have identified the difficulty yet interesting features of control synthesis for SAMSs.

The ball and beam system is a common control laboratory experiment for undergraduates [7]. The ball and beam
mechanism typically comprises a ball on a beam. The ball rolls along the beam as the beam angle changes. Control of this
ball and beam system has been widely investigated. However, discovering a control law that stabilizes this system remains
an active area of research.
ll rights reserved.
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The ball and beam system has both nonlinear and unstable characteristics. Hence, several approaches, such as input–
output feedback linearization [8], robust nonlinear control [9,10] and fuzzy logic control [11–13], have been developed to
control the ball and beam system. However, these schemes are based on the same conventional ball-on-beam plant, in
which the ball rolls along the beam in response to beam angle changes. Notably, this system lacks a mechanism for other
control purposes. Furthermore, a literature review indicates that no researcher has attempted to control a ball and beam
mechanism using a pneumatic cylinder for actuation. Thus, this work proposes a novel ball-and-beam-like mechanism
called the cart–seesaw system [14]. The seesaw can only rotate on a vertical plane with one degree of freedom (dof), and
the cart slides along the seesaw in response to a force applied by a pneumatic device. Notably, this system has only one
sliding cart.

Moreover, many studies [15–20] have elucidated the dynamic responses of a flexible beam with a moving cart. Such
systems occur when high-speed trains travel on railroad tracks and bridges, with overhead cranes, during high-speed
precision machining and when computer disk drives are used for data storage [21]. When used in a system with flexible
structures, piezoelectric materials are bonded to the body structure using a strong adhesive. A structure with an integrated
distributed piezoelectric sensor and actuator was described in [22–26]. These studies demonstrated that the distributed
piezoelectric sensing layer monitors structural oscillation via the converse piezoelectric effect. However, all these studies
limited their focus to vibration control of a laminated beam, and no study has developed a control methodology for an
elastic beam fixed onto a moving cart. This work applies a novel approach for a high-performance piezoelectric absorber in
the beam–cart system in [21]. In reality, vibration of an elastic beam is markedly affected by the moving cart, particularly
during reciprocal cart motion. However, this work only deals with the beam–cart system; that is, it does not address an
elastic beam subjected to a seesaw mechanism.

Hence, this work extends the results of the author’s previous work [14]. The motion and control of a Bernoulli–Euler
beam subjected to the modified cart/seesaw system are analyzed first. Moreover, this work presents a novel active–passive
vibration absorber with gray relational analysis for tuning PID control parameters of an active controller. The experimental
apparatus is used to assess the efficiency of the proposed scheme. This work will serve as a reference for achievable control
behavior for an underactuated mechanism, and extends existing curriculum to the control of underactuated robots.
Moreover, the proposed software/hardware platform can also be profitable for the standardization of laboratory
equipment, as well as for the development of entertainment tools.

2. System configuration

Fig. 1 schematically depicts a beam–cart–seesaw system. Fig. 2 shows this beam–cart–seesaw system and some
important devices in such a system. The system consists of two mobile carts coupled via rack-and-pinion mechanics to two
parallel tracks mounted on pneumatic rodless cylinders. The cylinder was double-acting. One cart carries an elastic beam,
Fig. 1. Conceptual model of an elastic beam subjected to the cart/seesaw system.
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Fig. 2. Visualization of the beam–cart–seesaw system.
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and the other cart acts as a counterbalance. Forces are applied to each cart. The seesaw was jointed and freely rotated in
unison about the pivot point. A linear potentiometer was utilized to determine the position of the sliding cart, and rotary
potentiometers were adopted to determine the seesaw and beam angles. Cart position was evaluated from the seesaw
center, and was positive when the cart was on the right side of the seesaw. Similarly, the seesaw angle was positive when
the seesaw rotated counterclockwise relative to the horizon.

Furthermore, the seesaw falls to the definite up–down direction instantaneously when the cart travels to a particular
place, thereby creating instantaneous dynamic instability. Hence, as a dynamic improvement, an adjustable counterweight
is installed underneath the seesaw and functions as a damping mechanism absorbing impact and shock energy. This
mechanism is called as the dynamic balance apparatus.

The experimental pneumatic system comprised two pneumatic rodless cylinders, each 510 mm long, four controlled
proportional valves, and a compressed air source. The air supplied to the cylinder was controlled by an electro-pneumatic
transducer that provided air pressure proportional to supplied voltage. Each motion direction was selected by appropriate
actuation of the 3

2-way electro-valves (model type, SMC VEF 3121-1), which converted electrical signals into proportional
airflow. Fig. 3 shows the pneumatic control circuit.
3. Dynamic modeling

This section introduces a mathematical model of the elastic beam subjected to the cart/seesaw system, as acquired from
known dynamics. Fig. 4 shows the proposed beam–cart–seesaw system. The beam–cart–seesaw system brings the cart
from an initial position at any initial speed to a desired position on the seesaw by applying an appropriate force to the cart
and, thus, adjusting the seesaw angle. Carts 1 and 2 sliding along the seesaw have one and two dof, respectively, which are
actuated by a pneumatic proportional control valve. The angle of the seesaw and elastic beam are the third and fourth dof,
respectively, both of which are not actuated. Even if the beam is considered to mounted on a moving cart and it may need
large surface, the wind force can be negligible in the modeling owing to little effect on assumption for the wind force on
the system.

Let the moment of inertia of the seesaw be J, gravitational acceleration be g, and the mass of sliding Carts 1 and 2 be m1

and m2, respectively. The counterweight mass, m3, with length l3 is attached underneath the seesaw and serves as the
vibration damper absorbing impact and shock energy. The counterweight vibration absorber only considers the
counterweight mass as a damping mechanism, therefore, no damping factor need to be discussed for the counterweight
mass.

The mass per unit length of the elastic beam is g, elastic beam length is l, and flexural rigidity of the unloaded beam is EI.
Additionally, y is the seesaw angle, b is the elastic beam angle, and F1 and F2 are the force applied to Carts 1 and 2,
respectively. Consequently, the entire system can be divided into the following five subsystems: Cart 1; Cart 2; the
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counterweight mass; seesaw; and, elastic beam. Thus, the kinetic energy and potential energy for each subsystem can be
computed and the global dynamic equations can then be derived.

Assuming a Bernoulli–Euler beam model, the deflection of an elastic beam w(r,t) can be expressed as the sum of an
infinite series terms

wðr,tÞ ¼
Xn

i ¼ 1

qiðtÞfiðrÞ (1)

where qi(t) are generalized modal coordinates; fi(r) are mode-shape functions that depend upon the boundary value
problem; and n is the number of retained modes [21].

Additionally, total kinetic energy, K(t), and potential energy, P(t), are derived as

KðtÞ ¼ KcðtÞþ

Z l

0
Kbðr,tÞdr (2)

PðtÞ ¼ PcðtÞþ

Z l

0
Pbðr,tÞdr (3)

where Kc(t) and Pc(t) are the kinetic and potential energy functions resulting from motion of the carts, seesaw, and
counterweight mass; and Kb(r,t) and Pb(r,t) are the kinetic and potential energy density functions resulting from beam
flexibility, respectively. Thus, total kinetic energy of the entire system can be written as
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Similarly, total potential energy can be derived as

P¼m1gx1 sinyþm2gx2 sin y�m3gl3 cosyþ
1

2
EI

Z l

0

Xn

i ¼ 1

f
00

iðrÞqiðtÞ

" #2

dr (5)

By selecting slide carts positions x1 and x2, seesaw angle y, beam angle b, and flexible modal coordinates qi(t) as
generalized system coordinates, and by using the Lagrangian formulation, the dynamic equations can be rewritten as

MðcÞ €cþNðc, _cÞþGðcÞþKðcÞ ¼ t (6)

where c=[x1 x2 y a q1 q2 qn]T; M is the inertial matrix, N is Coriolis/centripetal matrix, G is the gravity matrix, K is the
stiffness matrix, and t¼ u1 u2

� �T
, where u1 is the force applied to each cart driven by a voltage command from the

pneumatic servo valve, u1 ¼ F1 F2
� �T

; and u2 is the control voltage from the piezo-actuator.
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Thus, the dynamic equation can be shown as the following matrix form:
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where l0 is the location of the piezo-actuator. The details of symbolic terms in Eq. (6) are provided in Appendix 1.
The inertial matrix of the overall system, M(c)AR(4 + n)� (4 +n), in Eq. (7) is symmetrical and positive-definite. Therefore,

inertial matrix M(c), which is uniformly bounded from above and below, satisfies

mI4þnrMðcÞrmI4þn, 8c 2 R4þn (8)

where m and m are positive constants, and In + pAR(4 + n)� (4 +n) is the identity matrix. The resulting equations above
demonstrate that the element of the dynamic equation matrix is very complex and highly nonlinear. Because manual
symbolic expansion for such system is tedious, time consuming, and prone to errors, an automated derivation process is
highly desirable. Therefore, a symbolic program written in MATLAB to generate the dynamic equations for such system is
used in this research.

4. Controller design

The control objective attempts to determine input control force u1, such that the deflection of the beam w damps out as
efficiently as possible while the positions of the sliding carts follow the desired tracking. This section introduces a two-
level control scheme. The pneumatic proportional valves drive the carts to the desired position dominated by the position

tracking controller. Moreover, a vibration absorber design for a structure ultimately attempts to limit structural vibrations to
the desired level by appropriately driving the piezo-actuator. However, due to space limitations, this work only focuses on
the vibration suppression controller.

The controller for suppressing vibratory motion can be constructed using a piezo-material. The sensors are utilized to
obtain information of modal state variables, which are further processed as modal control forces. The actual control inputs
are synthesized and applied to the proposed system through the piezoelectric actuators.

Although controlling flexible structures is a complex task, one can design and employ high-performance controllers that
suppress structural vibrations, thereby ensuring the closed-loop stability of the controlled system. Particularly, when
actuators and sensors are collocated and compatible (e.g., collocated piezoelectric transducers), a very efficient control
design approach can be generated. Therefore, the control design techniques introduced in this study assume a collocated
structure.

The voltage across the faces of a distributed piezoelectric sensor subjected to strain due to beam is derived by

VsðtÞ ¼�ðQ0=CÞ

Z l2

l1

w
00

ðr,tÞZðrÞdr

¼ ðQ0=CÞðw0ðl1,tÞ�w0ðl2,tÞÞ

¼ ðQ0=CÞ �
Xl

i ¼ 1

½f0iðl1Þ�f
0

iðl2Þ�qiðtÞ (9)

where Q0 is the charge coefficient, which depends on the piezoelectric constant and geometric parameters, C is the sensor
capacitance, (r,t) is the beam curvature, Z(r) is the spatial distribution of the sensor segment, and l1 and l2 are the sensor
boundary coordinates. Moreover, i(r) is the slope of the mode shape function evaluated at x, and qi(t) is the modal
coordinate corresponding to the ith mode [21,25,26].

Since the vibration suppression controller is independent of cart/seesaw positioning control, the individual PID
controller is easy to design for each collocated actuator–sensor pair. However, the principal challenge in designing an
acceptable PID controller is tuning PID controller parameters to achieve the desired performance. The approach for
selecting parameters based on experimental results is typically time-consuming. However, manual tuning is not frequently
applied in practice, because it is both laborious and time-consuming, particularly for processes with large time constants.
Manual tuning also requires an instrument/control engineer and operator to pay close attention to the process, because the
process must be operated near instability to measure ultimate gain and period [27]. Thus, an efficient method for selecting
the PID control gains of a vibration absorber is required.

This remaining subsection introduces the gray relational approach for analyzing system output (vibrational
displacement) sensitivity to small perturbations in PID controller parameters. Gray relational analysis is employed to
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rank the importance of PID control gains. Gray relational analysis is described as follows. The computational technology
resembles that which is described elsewhere [27].

Step 1. Estimate the comparison series xj

The vibrational displacement of an elastic beam is defined by eb(kT)=H(kT)�Hd(kT), where Hd(kT) is the desired
vibrational displacement (always set to zero) for the elastic beam, H(kT) is the sensor signal from the piezoelectric sensor,
k is an integer, and T is the sampling period. Thus, the comparison series xj can be defined as the vibrational displacement
of the elastic beam in a normalized root-mean-square (rms) formulation

xj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

k ¼ 1

e2
H

vuut =N (10)

where N is the total number of samples.
Step 2. Calculate the reference series xi,

x�i ðkÞ ¼
min½xð0Þj ðkÞ�

xð0Þj ðkÞ
(11)

where min½xð0Þj ðkÞ� is the minimum values in a comparison series at the kth experimental datum.
Step 3. Compare the absolute differences of a given series via

DijðkÞ ¼ jxiðkÞ�xjðkÞj (12)

where Dij is the absolute difference between series xi and xj at the kth experimental datum. Typically, xi and xj are
defined as reference and comparison series, respectively. The values for the original series must be normalized to the
same order as variations in the order of data that characterize factors that result in an inaccurate gray relational
grade (GRG).

Step 4. Estimate the minimum and maximum values of each experimental datum via

Dmin¼ 8j
min

2 i8k
min

jxiðkÞ�xjðkÞj

Dmax¼ 8j
max

2 i8k
max

jxiðkÞ�xjðkÞj (13)

Step 5. Estimate the gray relational coefficient (GRC) using g(xi(k),xj(k))
The calculated GRC expresses the relationship between control performance, which is an estimated reference sequence,

and its sequences that are compared. Eq. (14) yields the GRC of (xi, xj) at the kth corresponding datum. The GRC can be
intuitively considered the point-to-point relationship at the kth corresponding datum.

gðxiðkÞ,xjðkÞÞ ¼
DminþmDmax

DijðkÞþmDmax
(14)

where m is the distinguishing coefficient; its interval is bounded on mA[0,1] and frequently taken as 0.5. The factor m in
Eq. (14) controls the resolution between Dmax and Dmin. The operator can select a value between 0 and 1 that is best
suited to the application. Additionally, Dmin and Dmax are the minimum and maximum differences between the reference
sequence and all other sequences, respectively.

Step 6. Estimate the gray relationship grade (GRG) P(xi,xj)
The GRG is employed to describe and elucidate the relationship between two sets of comparisons and references

under a particular background. A large GRG between two tasks indicates that the tasks are closely related. In other words,
tasks that are very similar have a large GRG. When estimating the effort expended by a PID controller, the GRG is the
strength of the relationship between an estimated control performance (reference series) and its historical values
(comparison series). The GRG is defined as the mean of GRCs of the effort drivers. Here, P(xi,xj) is designed as the GRG
between xi(k) and xi(k)

Pðxi,xjÞ ¼
1

m

Xm
k ¼ 1

gðxiðkÞ,xjðkÞÞ (15)

where m is the number of effort drivers identified during the estimation procedure. In the vibration suppression control
experiment, the GRG is associated with the impact of the PID control gains for vibration damping.

5. Results and discussion

An experimental apparatus was constructed and presented (Fig. 5). The beam–cart–seesaw system consists of two
mobile carts, which are coupled via rack and pinion mechanics to two parallel tracks mounted on pneumatic rodless
cylinders. One cart carries an elastic beam, while the other one serves as a counterbalance. Four solenoid proportional
direction control valves were used to drive the two double-acting pneumatic rodless cylinders. The air supply was
controlled at 6 bar (6 kg f/cm2). The controller of the beam–cart–seesaw system is composed of two National Instruments
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(NIs) Data Acquisition (DAQ) boards (the PCI-MIO-16E-4 and PCI-6174) and a host personal computer. The real-time
software interface of the controller board permits rapid control prototyping using LabVIEW, thereby enabling a quick
implementation of the proposed control approach using the real-time block model applied in LabVIEW. Furthermore,
a flexible cantilever aluminum-beam-type structure with piezoelectric patches was symmetrically bonded on both sides to
permit structural bending. The cantilever beam was clamped at one end and free at the other end. Strip-bender-type
401010 (made by American Piezo Ceramics, Inc.) piezoelectric patches were attached to the beam surfaces and acted as
actuators (where input signals are applied) and a sensor (where output signals are recorded). The voltage from the
piezoelectric sensor was utilized to evaluate the beam vibration level. Hence, the control work attempts to suppress
vibrations of this beam–cart–seesaw system using a PID vibration suppression control structure. The feedback voltage
applied across the piezoelectric actuator can be determined using the control algorithm in Section 4.

Gray relational analysis is performed to determine the sensitivity of PID vibration controller parameters and achieve
the desired damping performance. Calculation of the GRG follows the steps outlined in Section 4. Table 1 presents the
computational results yielded by Eqs. (10)–(15) for vibration suppression of an elastic beam. Table 1 presents the
normalized rms tracking error, eb, for various kbp, kbi, and kbd control gains. Table 1 also shows the GRC g and its relational
grade, P. The GRG P is 0.94082 for kbp, 0.91509 for kbd, and 0.90899 for kbi. Hence, the sensitivities of parameter
perturbations are obtained easily. Furthermore, the PID vibration controller is more sensitive for tuning kbp than for tuning
kbd and kbi (Table 1). The ranked importance of control gains is kbp4kbd4kbi. The most important parameter typically
dominates during base control; the next most important parameters are used to modify fine motion. Hence, control
parameters with the highest priorities should be modified first. Based on the GRG between tracking error and PID control
gains, all control gains can be ranked according to their GRGs—this procedure is called gray relational ranking.
Consequently, an operator can make an appropriate decision based on the gray ranking and the control goal can be
achieved. Fig. 6 shows the modification process.



ARTICLE IN PRESS

Table 1
Grey relational grade for the vibration suppression controller of an elastic beam.

Design Eq. (10) Eq. (11) Eq. (12) Eq. (14) Eq. (15) Rank

xj xi Dij g(xj(k), xi(k)) P(xj, xi)

kbp=500 kbp=500 kbi=0 0.04886 0.87778 0.82892 0.96672 0.94082 1

kbp=600 0.04289 1.00000 0.95710 0.88044

kbp=700 0.04532 0.94646 0.90114 0.91614

kbp=800 0.05126 0.83665 0.78538 1.00000

kbp=600 kbp=500 kbi=0 0.04289 1.00000 0.95710 0.88044 0.91509 2

kbp=600 0.04462 0.96124 0.91661 0.90598

kbp=700 0.04598 0.93277 0.88678 0.92577

kbp=800 0.04755 0.90205 0.85450 0.94817

kbp=600 kbp=500 kbi=0.5 0.04588 0.90602 0.86013 0.94419 0.90899 3

kbi=1 0.04157 1.00000 0.95842 0.87963

kbi=1.5 0.04321 0.96197 0.91875 0.90459

kbi=2 0.04341 0.95760 0.91419 0.90756

k

Eq. (13)

Dmin Dmax

0.78538 0.95842

dip kkk ,, idp kkk >>
id kk ,

pk

ip kk ,

dk
dp kk ,

ik

Fig. 6. Flowchart of the parameter modification process.
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5.1. Experimental results of vibration suppression at the equilibrium point of the seesaw

As mentioned in Section 4, vibration control must only select control gains for vibration suppression. Thus, redesigning
a vibration-damping controller for such a system is unnecessary. Therefore, to further confirm controller performance,
vibration suppression around the seesaw equilibrium point was applied to the system. The seesaw falls toward the definite
direction instantaneously when the cart moves to a particular location, thus creating instantaneous dynamic stability
without a counterweight mass. Therefore, to investigate counterweight mass damping capability (passive control), various
counterweight mass lengths are discussed.

5.1.1. Case 1: carts sliding with a small displacement around the equilibrium point

First, this work investigates carts sliding with a small displacement around the equilibrium point. Fig. 7 plots the time
response for carts position (Fig. 7(a)) and seesaw angle (Fig. 7(b)) of Case 1. Both carts start at the seesaw midpoint and try
to keep the seesaw in the equilibrium state. One cart carries an elastic beam and the other cart functions as a
counterbalance. Table 2 lists the normalized rms piezo-sensor output voltage under uncontrolled, passive, active–passive
absorber for various counterweight mass lengths l3. It is worth noting that if the counterweight mass l3=0, it means that
the counterweight mass tightly attaches to the seesaw platform. The counterweight mass has a damping capability that
stabilizes the dynamic system. Moreover, the vibratory displacement decreases in magnitude while the counterweight
mass device far from the seesaw (Table 2). Consequently, the proposed counterweight mass device markedly improved the
performance of seesaw equilibrium motion and vibration suppression for an elastic beam. The counterweight mass device
can serve as a damping mechanism that absorbs impact, shock, and vibration energy. Although economical, passive control
can only control vibrations up to a certain limit. Conversely, an active control operates with external energy supplied
continuously. Namely, this work is applied an active piezoelectric absorber to an elastic beam.

According to the gray relational degree described in Section 4, parameter kbp is first adjusted to yield the best vibration
suppression for an elastic beam. Parameters kbd and kbi are then adjusted to acquire the best performance for reference
inputs for the remaining operational range. After arbitrarily assigning values to PID parameters (kbp=600, kbi=1, and
kbd=500), the modification process is applied (Fig. 6). First, the adjusted sequence for control parameters for vibration
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Fig. 7. Time response for (a) carts position and (b) seesaw angle (Case 1).

Table 2
Normalized RMS vibrational displacements of a beam (Case 1).

Uncontrolled (A) Passive control (B) Active–passive absorber (C) Reduction

[(A�C)/A]�100% (%)

Reduction

[(B�C)/B]�100% (%)

0.135094 l3=15 cm

0.04178

kbp=600, kbi=1, kbp=500 0.04157 69.22 0.512

kbp=610, kbi=1, kbd=500 0.03854 71.47 7.76

kbp=610, kbi=1, kbd=460 0.03711 72.53 11.19

kbp=610, kbi=1.1, kbd=460 0.03510 74.01 15.59

l3=7.5 cm

0.04594

kbp=620, kbi=1.1, kbd=460 0.03972 70.59 13.54

kbp=630, kbi=1.1, kbd=460 0.03857 71.44 16.04

kbp=630, kbi=1.1, kbd=490 0.03677 72.78 19.95

kbp=620, kbi=1.2, kbd=490 0.03472 74.30 24.42

l3=0 cm

0.05143

kbp=640, kbi=1.2, kbd=490 0.04339 67.88 15.62

kbp=650, kbi=1.2, kbd=490 0.03909 71.06 23.99

kbp=650, kbi=1.2, kbd=500 0.03627 73.15 29.47

kbp=650, kbi=1.3, kbd=500 0.03575 73.53 30.48
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suppression is

kbp ¼ 600, kbi ¼ 1, kbd ¼ 500
� �

- kbp ¼ 610, kbi ¼ 1, kbd ¼ 500
� �

- kbp ¼ 610, kbi ¼ 1, kbd ¼ 460
� �

- kbp ¼ 610, kbi ¼ 1:1, kbd ¼ 460
� �

Performance improved significantly after this modification methodology was applied to the control parameters (Table 2).
Suppression performance was improved significantly by tuning control parameter kbp. The vibrational displacement response was
decreased markedly by the control action, indicating that parameter kbp in the controller is the most important parameter and
dominates base control action. However, the enhanced performance achieved by tuning only parameter kbp is insignificant and
vibrational displacement remains large. Therefore, tuning kbd and then kbi significantly improves system vibration suppression.
Consequently, the proposed modification scheme reduces vibrational displacement. The performance of the active–passive
absorber is markedly better than that of passive damping for vibration reduction. The proposed active–passive absorber reduces
displacement due to vibration of an uncontrolled by roughly 68–73% (Table 2). Furthermore, compared with passive control,
vibrational displacement is further reduced to 0.512–30.48% by the proposed active–passive piezoelectric absorber. Evidently, a
vibration reduction (%) by the active–passive absorber heavily depends on PID control values. The normalized rms is around
0.0351–0.04339 with the active–passive absorber. Such a controller suppresses the transverse deflection of the structure.
Moreover, active–passive absorber performance is relatively unaffected by changes in counterweight mass length l3. The proposed
approach ensures that active and passive elements are configured in a systematic and integrated manner.

5.1.2. Case 2: carts sliding with reciprocal motion

Fig. 8 plots the time response for carts position (Fig. 8(a)) and seesaw angle (Fig. 8(b)) of Case 2. In this case, one cart
carries an elastic beam sliding from the end of the seesaw to the other end of the seesaw. Thus, the other cart functions as a
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Fig. 8. Time response for (a) carts position and (b) seesaw angle (Case 2).
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counterbalance. Therefore, the seesaw angle should always be close to zero to keep the seesaw in the equilibrium state
while the carts slide. The proposed active–passive absorber reduces displacement due to vibration resulting from passive
damping by approximately 7.24–30.48% for each suitable PID parameter (Table 3). Once again, the performance of
Table 3
Normalized RMS vibrational displacements of a beam (Case 2).

Uncontrolled (A) Passive control (B) Active–passive absorber (C) Reduction

[(A�C)/A]�100% (%)

Reduction

[(B�C)/B]�100% (%)

0.12931 l3=15 cm

0.05026

kbp=600, kbi=1, kbd=500 0.04663 63.93 7.24

kbp=620, kbi=1, kbd=500 0.04417 65.84 12.24

kbp=620, kbi=1, kbd=530 0.04335 66.41 13.76

kbp=620, kbi=1.3, kbd=530 0.04258 67.07 15.3

l3=7.5 cm

0.05155

kbp=620, kbi=1.3, kbd=530 0.04987 61.43 3.25

kbp=640, kbi=1.3, kbd=530 0.04605 64.38 10.67

kbp=640, kbi=1.3, kbd=550 0.04460 65.50 13.49

kbp=640, kbi=1.4, kbd=550 0.04276 66.93 17.05

l3=0 cm

0.05142

kbp=640, kbi=1.4, kbd=550 0.04540 64.89 11.71

kbp=650, kbi=1.4, kbd=550 0.04487 65.30 12.75

kbp=650, kbi=1.4, kbd=570 0.04275 66.94 16.87

kbp=650, kbi=1.4, kbd=570 0.04193 67.57 30.48
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Fig. 9. Time response for (a) carts position and (b) seesaw angle (Case 3).
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Table 4
Normalized RMS vibrational displacements for seesaw tilting motion.

Uncontrolled (A) Passive control (B) Active–passive absorber (C) Reduction

[(A�C)/A]�100% (%)

Reduction

[(B�C)/B]�100% (%)

0.20132 l3=15 cm

0.06629

kbp=600, kbi=1, kbd=500 0.06411 68.15 3.29

kbp=630, kbi=1, kbd=500 0.06142 69.49 7.35

kbp=630, kbi=1, kbd=520 0.05988 70.25 9.67

kbp=630, kbi=1.3, kbd=520 0.05789 71.24 12.67

l3=7.5 cm

0.07790

kbp=630, kbi=1.3, kbd=520 0.07634 62.08 1.99

kbp=660, kbi=1.3, kbd=520 0.06117 69.61 21.47

kbp=660, kbi=1.3, kbd=540 0.05723 71.57 26.53

kbp=660, kbi=1.5, kbd=540 0.05574 72.31 28.44
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the active–passive piezoelectric absorber is relatively unaffected by any change in counterweight mass length l3. Hence,
experimental results support the same conclusion as that for vibration suppression in Case 1.
5.2. Experimental results of vibration suppression for seesaw tilting motion

5.2.1. Case 3: both carts slide in the same direction simultaneously

Fig. 9 plots the time response for carts position (Fig. 9(a)) and seesaw angle (Fig. 9(b)) of Case 3. In this case, both carts slide in
the same direction simultaneously. Thus, the overall beam–cart–seesaw system was tilted while the carts slide. The normalized
rms piezo-sensor output voltage was around 0.06629–0.00790 when implementing counterweight mass passive damping
(Table 4). The proposed active–passive piezoelectric absorber reduced displacement due to vibration of a passive absorber by
roughly 3.29–28.44% when the gray modification scheme was applied (Table 4). The performance of the proposed active–passive
piezoelectric absorber was not significantly affected by modifying the passive absorber parameters, thereby demonstrating the
effectiveness of the controller in minimizing vibrational displacement in the time domain, even when overall tilting occurs.

Hence, this study developed a novel fast adaptation scheme that used the GRG to select PID vibration control
parameters for the beam–cart–seesaw system. Relational analysis was applied to easily rank the importance of PID control
gains. The most important parameters were identified to ensure parameter sensitivity. The proposed gray relational
methodology allows operators to adjust easily control gains during system operation.
6. Conclusions

This work, an extension of our previous work [14], generates a novel SAMS model called the beam–cart–seesaw system.
The dynamic formulation is first proposed for control of this new elastic beam–cart–seesaw model. Moreover, the GRG is
utilized to investigate the sensitivity in tuning the active PID controller to achieve the desired vibration suppression
performance. The active–passive piezoelectric absorber provides passive damping, and enhances the active action
authority. However, development of the proposed software/hardware platform can be profitable for standardizing
laboratory equipment, and the development of entertainment tools. The proposed platform can be used with the
experimental apparatus to explore the performance of such a system.
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